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Abstract: A semiring A is called a zerosumfree semiring if for all a, b ∈ A, a+b = 0
implies that a = 0 and b = 0. Here we have endowed every semimodule over a
zerosumfree semiring A with a natural inner product of values in A. A dimen-
sion theorem for orthonormal bases of these inner product spaces over zerosumfree
semiring is proved. The main results in this paper generalize the corresponding
results on the Boolean inner product spaces [5].
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1. Introduction and Preliminaries
Linear algebra over distributive lattices, Boolean algebras, incline algebras and
semirings etc. has a long history, as well as holds an important position in the
modern theory of linear algebra due to their applications to computer science,
optimizations and theoretical physics [3,7]. Several authors have studied invert-
ibility of matrices and linear operators on the vector spaces over such algebras
[2,6,9,10,11,12,13,15], whereas some others are developing the theory of vector
spaces over such algebras [14,16,17]. In 2009, Gudder and Latremoliere [5] de-
veloped inner product spaces over a Boolean algebra. Gudder and Latermoliere
[5] generalized some results on power of matrices over the two element Boolean
algebra {0, 1} [4] to arbitrary Boolean algebras. In this paper following the idea
of Gudder and Latermoliere, we have developed inner product spaces on zerosum-
free semirings. Since every Boolean algebra is a zerosumfree semiring, our results
generalize the corresponding results on the Boolean inner product spaces. It is
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a worthy generalization, since it enables us to get the results without two strong
properties of Boolean algebras like absorptive property and having complement of
each element.

A semiring is an algebraic system (S,+, ·) such that both (S,+) and (S, ·) are
commutative monoids with identity elements 0 and 1 respectively, and connected
by the ring-like distributive laws. Also, the zero element 0 is absorbing in S, i.e.,
0r = r0 = 0 for all r ∈ S. Let S be a semiring and a ∈ S. We denote by ak

the k-th power of a and by ka the sum a + a + · · · + a(k times ) for any positive
integer k. A semiring S is called a zerosumfree semiring if a + b = 0 implies that
a = b = 0 for any a, b ∈ S. Zerosumfree semirings are also known as antirings [3].
They are quite abundant: for example, every Boolean algebra, the fuzzy algebra
([0, 1],∨, T ), where T is a t− norm [8], every distributive lattice and every incline
[1] are zerosumfree semirings. The set Z+ of all nonnegative integers with the usual
operations of addition and multiplication of integers is a zerosumfree semiring. The
max-plus algebra (R ∪ {−∞},max,+) and min-plus algebra (R ∪ {+∞},min,+)
are commutative zerosumfree semirings. For more details on zerosumfree semirings
we refer to [3,7,15].

Here we initiate to develop the semimodules over zerosumfree semirings. We have
introduced the notion of orthogonality and proved that the definition of inner prod-
uct in a semimodule over a zerosumfree semiring, is independent of the choice of
basis. At last we have shown that any two bases of a semimodule over a zerosum-
free semiring have the same cardinality.

Before going to the abstract inner product spaces over a zerosumfree semiring in
general, we first characterize the particular inner product space Ln(A) of all n-
tuples on a zerosumfree semiring A.

2. The Inner Product Space Ln(A)
In this section we characterize Ln(A), the set of all n−tuples of elements in A and
which is endowed with an inner product. Here we show that any orthonormal basis
of Ln(A) has exactly n elements.

Let A be a zerosumfree semiring. For all n ∈ N, we denote by Ln(A) the set of
all n-tuples of elements in A. We endow Ln(A) with the following operations: if
a=(a1, a2, · · · , an), b=(b1, b2, · · · , bn) ∈ Ln(A) and c ∈ A, then

a+ b = (a1 + b1, a2 + b2, · · · , an + bn)

and ca = (ca1, ca2, · · · , can).

Then Ln(A) satisfies all axioms of a linear space regarding the interrelations be-
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tween the external composition A×Ln(A) −→ Ln(A) and the semigroup structure
of (Ln(A),+) and the semiring structure of (A,+, ·).
We call the elements of Ln(A) zerosumfree vectors and call Ln(A) a zerosumfree
semimodule. We will use the following definitions throughout the rest of this chap-
ter.

The zerosumfree semimodule Ln(A) is endowed with a natural inner product.

Definition 2.1. Let a=(a1, · · · , an) and b=(b1, · · · , bn) be two vectors of Ln(A).
Then we define the inner product of these two vectors by

〈a, b〉 =
n∑

i=1

aibi.

Definition 2.2. Two vectors a and b in Ln(A) are orthogonal when 〈a, b〉 = 0, in
which case we shall write a⊥b.
The vector a is said to be a unit vector when 〈a, a〉 = 1.

Definition 2.3. An orthogonal set in Ln(A) is a subset E of Ln(A) such that for
all e, f ∈ E we have e 6= f ⇒ 〈e, f〉 = 0. An orthonormal subset of Ln(A) is an
orthogonal set whose all elements are unit vectors.

Definition 2.4. A subset B of Ln(A) is a generating subset of Ln(A) when every
element of Ln(A) is a linear combination of elements in B.
A subset B of Ln(A) is called a basis of Ln(A) when every element of Ln(A) can
be expressed uniquely as a linear combination of elements in B with nonzero coef-
ficients. If moreover B is orthonormal, then it is called an orthonormal basis of
Ln(A).

Proposition 2.5. If a = (a1, · · · , an) and b = (b1, · · · , bn) in Ln(A) are orthogonal
then aibi = 0 for all i = 1, 2, · · · , n.
Proof. In Ln(A), a⊥b implies that a1b1 + a2b2 + · · · + anbn = 0. Since A is zero-
sumfree, a1b1 = a2b2 = · · · = anbn = 0.

Lemma 2.6. Let M be an orthonormal set in Ln(A). Then every linear combina-
tion of elements of M has unique expression.
Proof. Let a(6= 0) ∈ Ln(A) be such that a =

∑m
i=1 ciei =

∑n
i=1 difi, where

c1, c2, · · · , cm; d1, d2, · · · , dn ∈ A \ {0} and e1, e2, · · · , em; f1, f2, · · · , fn ∈ M . Since
M is orthonormal, ci = 〈

∑m
i=1 ciei, ei〉 for i = 1, 2, · · · ,m. If ej /∈ {f1, f2, · · · , fn}

for some j ∈ {1, 2, · · · ,m}, then cj = 〈a, ej〉 = 〈
∑n

i=1 difi, ej〉 = 0, which con-

tradicts our assumption that ci 6= 0 for all i ∈ {1, 2, · · · ,m}. Consequently,
{e1, e2, · · · , em} ⊆ {f1, f2, · · · , fn}. The reverse inclusion follows similarly. Thus
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m = n and upon renumbering we have ei = fi for all i = 1, 2, · · · , n. Then
ci = 〈a, ei〉 = 〈a, fi〉 = di. The case a = 0 follows trivially. Hence the result
follows.

Theorem 2.7. If M = {a1, ..., am} is an orthonormal subset of Ln(A), then
m ≤ n.
Proof. We prove it by induction on n, the numbers of tuples of elements of A.
First, we prove it for n=1, suppose on the contrary, {a, b} is an orthonormal subset
of L1(A). Then a · b = 0 and a2 = 1 = b2. On multiplication by a on both sides of
a · b = 0, we get b = 0, similarly a = 0. This contradicts our assumption. Hence it
is true for n = 1. Suppose the result is true for all Lk(A) where k ≤ n.

Let M = {a1, · · · , am} is an orthonormal subset of Ln+1(A) and aj = (a1j, a2j,

· · · , an+1,j). Consider the set M ′ = {c2, · · · , cm} defined by cj = (c1j, c2j, ..., cnj)

where cij = ai1an+1,j + aij. Now we show that M ′ forms an orthonormal subset of
Ln(A). First we show that for all r 6= s, c1rc1s + c2rc2s + · · · + cnrcns = 0. Now,
since r, s 6= 1, we have

circis =(ai1an+1,r + air)(ai1an+1,s + ais)

= a2i1an+1,ran+1,s + ai1an+1,rais + airai1an+1,s + airais

= 0 by proposition (2.4)

and

〈cr, cr〉 =c21r + c22r + · · ·+ c2nr
=(a11an+1,r + a1r)

2 + (a21an+1,r + a2r)
2 + · · ·+ (an1an+1,r + anr)

2

=a2n+1,r(a
2
11 + a221 + · · ·+ a2n1) + 2an+1,r(a11a1r + a21a2r + · · ·+ an1anr)

+ (a21r + a22r + · · ·+ a2nr)

=a2n+1,r(a
2
11 + a221 + · · ·+ a2n1 + a2n+1,1) + (a21r + a22r + · · ·+ a2nr)

(for r 6= 1, an+1,ran+1,1 = 0)

=a21r + a22r + · · ·+ a2nr + a2n+1,r

=1

So M ′ is an orthonormal subset of Ln(A). Hence by induction hypothesis m−1 ≤ n
i.e. m ≤ n+ 1 and the result follows.

Theorem 2.8. Let M = {a1, ..., an} be an orthonormal subset of Lm(A). Then
M is an orthonormal basis for Lm(A) if and only if the rows of (aij)m×n is an
orthonormal subset of Ln(A).
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Proof. Denote aj = (a1j, ..., amj), j = 1, ..., n. Then we arrange M as
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


Assume that M is an orthonormal basis for Lm(A). Since δ1 = (1, ..., 0) ∈ Lm(A),
there exist b1, b2, · · · , bn ∈ A such that δ1 =

∑n
j=1 bjaj, which implies

b1a11 + b2a12 + · · ·+ bna1n = 1 (2.1)

b1a21 + b2a22 + · · ·+ bna2n = 0 (2.2)

... (2.3)

b1am1 + b2am2 + · · ·+ bnamn = 0 (2.4)

Since A is orthonormal, multiplying (2.1) by a11, (2.2) by a21, · · · , (2.4) by am1 and
then adding we get b1 = a11. Similarly multiplying (2.1) by a12, (2.2) by a22, · · · ,
(2.4) by am2 and then adding we get b2 = a12. Similarly we get b3 = a13, · · · , bn =
a1n.
Putting these values of bi’s in (2.1), we get

(1, 0, · · · , 0) = a11a1 + a12a2 + · · ·+ a1nan

= a11(a11, · · · , am1) + a12(a12, · · · , am2) + · · ·+ a1n(a1n, · · · , amn)

Equating componentwise, we get

a211 + a212 + · · ·+ a21n = 1

and
n∑

j=1

a1jaij = 0, (i 6= 1).

Similarly taking δ2, · · · , δm, we see that

a2i1 + a2i2 + · · ·+ a2in = 1, (i = 2, · · · ,m).

and

n∑
j=1

aijarj = 0, (i 6= r).

Conversely, suppose that the rows of (aij)m×n is an orthonormal subset of Ln(A).
That means

∑n
j=1 a

2
ij = 1 for all i = 1, · · · ,m and

∑n
j=1 akjaij = 0 for k 6= i;
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k, i ∈ {1, 2, · · · ,m}.
Thus it follows that

n∑
j=1

akjaij = δki = 1, k = i

= 0, k 6= i; (k, i = 1, 2, · · · ,m).

It is equivalent to
ak1a1 + ak2a2 + · · ·+ aknan = δk, that is

∑n
j=1 akjaj = δk. Since {δ1, · · · , δm} is the

standard basis for Lm(A). So every vector in Lm(A) has unique expression and
{a1, · · · , an} generates Lm(A) . It is also given that it is an orthonormal subset of
Lm(A), consequently an orthonormal basis of Lm(A).

Theorem 2.9. Let A be a zerosumfree semiring. Then any orthonormal basis of
Ln(A) has exactly n elements.
Proof. Let M = {a1, a2, · · · , am} be an orthonormal basis of Ln(A). Then con-
sidering M as (aij)n×m matrix, by Theorem 2.7, we see that the rows of (aij)n×m
is an orthonormal subset of Lm(A) and hence n ≤ m by Theorem 2.6.

Also since M is an orthonormal subset of Ln(A), then by Theorem 2.6, m ≤ n.
Thus m = n. Hence any orthonormal basis of Ln(A) has exactly n elements.

3. Inner product spaces on zerosumfree semiring
In this section we introduce abstract inner product space on a zerosumfree semir-
ing. Given a zerosumfree semiring A and a semigroup (V,+) we define V to be an
inner product space over A as follows:

Definition 3.1. A zerosumfree semimodule is a system (V,A,+, ·), where (V,+)
is a commutative monoid with identity 0v, A is a zerosumfree semiring and ′·′ is a
map A× V → V such that

(i) a · (b · v) = (ab) · v for all a, b ∈ A and v ∈ V ,

(ii) a · (u+ v) = a · u+ a · v for all a ∈ A and u, v ∈ V ,

(iii) (a+ b) · v = a · v + b · v for all a, b ∈ A and v ∈ V ,

(iv) 1.v = v for all v ∈ V ,

(v) 0.v = a.0v = 0v for all a ∈ A and v ∈ V ,
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(vi) There exists a set of vectors {v1, · · · , vn} ⊆ V such that every v ∈ V can be
expressed as v =

∑
aivi uniquely in the following sense: if for ai, bi ∈ A

v =
n∑

i=1

aivi =
n∑

i=1

bivi

then ai = bi, for i = 1, · · · , n. The set {v1, v2, · · · , vn} of vectors is called a
basis of V .

Ln(A) is an example of a zerosumfree semimodule with a basis {(1, 0, · · · , 0),
(0, 1, 0 · · · , 0), · · · , (0, · · · , 0, 1)}. Which we call the standard basis of Ln(A).

Let V be a zerosumfree semimodule over A with basis {v1, · · · , vn}. We define an
inner product 〈, 〉 : V × V −→ A by: for u =

∑
aivi and v =

∑
bivi,

〈u, v〉 =
∑

aibi. (3.1)

Definition 3.2. A zerosumfree semimodule V together with the above inner product
is called a zerosumfree inner product space.
The inner product on Ln(A),

〈(a1, a2, · · · , an), (b1, b2, · · · , bn)〉 =
∑

aibi

as defined in section 2 coincides with the inner product as defined in Definition 3.1
if the basis considered is the standard basis. Thus Ln(A) is a zerosumfree inner
product space.

Now we have following straightforward set of results:

Lemma 3.3. Let V be an inner product space on a zerosumfree semiring A. Then
for all u, v, w ∈ V , a ∈ A we have:

(i) 〈u, v〉 = 〈v, u〉,

(ii) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉,

(iii) 〈au, v〉 = a〈u, v〉,

(iv) 〈u, v〉 = 〈w, v〉 for all v ∈ V implies that u = w,

Proof. We left the proof of (i), (ii), and (iii).
(iv) Given that 〈u, v〉 = 〈w, v〉 for all v ∈ V . Let {v1, · · · , vn} be a basis of V .
Suppose that u =

∑n
i=1 aivi, v =

∑n
i=1 bivi, w =

∑n
i=1 civi.
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Then from the condition we have a1b1 + · · ·+ anbn = c1b1 + · · ·+ cnbn. It holds for
any v ∈ V , so taking v = v1 we get a1 = c1. Similarly taking v = v2 we get a2 = c2.
Proceeding similarly we see that ai = ci for all i = 1, · · · , n. Hence u = w.

Thus, the inner product is symmetric (i), linear ((ii) and (iii)), and nondegenerate
(iv) .
Let V and W be two zerosumfree semimodule over a zerosumfree semiring A. Then
a map T : V → W is called linear if T (av) = aTv and T (u+ v) = Tu+ Tv for all
u, v ∈ V and a ∈ A. A linear map T is said to be isometry if 〈Tu, Tv〉 = 〈u, v〉 for
all u, v ∈ V .

If T : V −→ W is an isometry then for v1, v2 ∈ V , Tv1 = Tv2 implies that
〈v1, v〉 = 〈Tv1, T v〉 = 〈Tv2, T v〉 = 〈v2, v〉 for all v ∈ V . Hence by Lemma 3.3(iv),
v1 = v2. Thus every isometry is injective.

By an isomorphism T : V −→ W we mean a surjective isometry and then V and
W are called isomorphic.

If T : V −→ W is an isomorphism, then T is bijective and so T has an inverse
(as a mapping) T−1 : W −→ V , it is easy to check that T−1 : W −→ V is an
isomorphism. Also composition of two isomorphisms is an isomorphism.

A semimodule over a zerosumfree semiring may have many bases. Now we show
that the Definition 3.1 of inner product is independent of the choice of basis.

For this we first prove the following lemma.

Lemma 3.4. Let V be a zerosumfree semimodule with a basis {v1, · · · , vn}. Then
there exists a bijective isometry φ : V → Ln(A).
Proof. Let φ : V → Ln(A) be defined by: for v =

∑n
i=1 aivi,

φ(v) = (a1, · · · , an).

It is clear that φ is linear. Now,

〈φ(u), φ(v)〉 = 〈(a1, · · · , an), (b1, · · · , bn)〉

=
∑

aibi = 〈u, v〉.

So φ is isometry. That it is bijective follows from the definition of basis.

Theorem 3.5. The definition of inner product in V is independent of the choice
of the basis.
Proof. Let {u1, · · · , un} and {v1, · · · , vm} be two bases of V . Then the mapping
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φ1 : V → Ln(A) defined by ,

φ1(
∑

aiui) = (a1, · · · , an)

is an isometry.
Similarly φ2 : V → Lm(A) defined by,

φ2(
∑

aivi) = (a1, · · · , am)

is also an isometry.
Let 〈u, v〉1 and 〈u, v〉2 be the inner products on V corresponding to the bases
{u1, · · · , un} and {v1, · · · , vm} respectively.
Then 〈u, v〉1 = 〈φ1(u), φ1(v)〉 and 〈u, v〉2 = 〈φ2(u), φ2(v)〉 for all u, v ∈ V .
Since φ2 ◦ φ−11 : Ln(A)→ Lm(A) is an isometry, we have

〈u, v〉1 = 〈φ1(u), φ1(v)〉
= 〈(φ2 ◦ φ−11 )(φ1(u)), (φ2 ◦ φ−11 )(φ1(v))〉
= 〈φ2(u), φ2(v)〉 = 〈u, v〉2.

Hence the result follows.
Orthogonality and orthonormality of vectors in a zerosumfree semimodule V are
defined as in Ln(A) in Section 2.

Theorem 3.6. If T : V −→ W is an isometry, then T maps every orthonormal
basis of V onto an orthonormal basis of T (V ).
Proof. Suppose {v1, · · · , vn} is an orthonormal basis of V and w ∈ T (V ). Then
there is v ∈ V such that w = T (v). Now v =

∑n
i=1 aivi for some ai ∈ A ,i = 1, · · · , n

implies that w =
∑n

i=1 aiT (vi) and hence every element of T (V ) is expressed as a
linear combination of T (v1), T (v2), · · · , T (vn) on A.

Now to show that such linear combinations are unique, consider a1, a2, · · · , an;
b1, b2, · · · , bn ∈ A such that

∑n
i=1 aiT (vi) =

∑n
i=1 biT (vi). This implies that

T (
∑n

i=1 aivi) = T (
∑n

i=1 bivi) and so
∑n

i=1 aivi =
∑n

i=1 bivi, since T is one-to-one.
Again since {v1, v2, · · · , vn} is a basis for V , we have ai = bi for all i = 1, 2, · · ·n.
Indent also 〈vi, vj〉 = δij, implies that 〈T (vi), T (vj)〉 = 〈vi, vj〉 = δij, for all
i, j = 1, 2, · · · , n. Thus T carries an orthonormal basis of V onto an orthonor-
mal basis of T (V ).

Corollary 3.7. If T : V −→ W is an isomorphism, then T maps every orthonor-
mal basis of V onto an orthonormal basis of W .

Corollary 3.8. If there is an isomorphism T : Lm(A) −→ Ln(A) then m = n.
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Proof. Consider the standard basis {e1, e2, · · · , em} of Lm(A), since T : Lm(A) −→
Ln(A) is an isomorphism, {Te1, T e2, · · · , T em} is also an orthonormal basis of
Ln(A). Again every orthonormal basis of Ln(A) has exactly n vectors, by Theo-
rem 2.8. Hence m = n.
Now we prove our main theorem of this section.

Theorem 3.9. Every basis of a zerosumfree semimodule have the same number of
vectors.
Proof. Let V be a semimodule over a zerosumfree semiring A. Consider two bases
{u1, u2, · · · , um} and {v1, v2, · · · , vn} of V . Then φ2 ◦φ−11 : Ln(A) −→ Lm(A) is an
isomorphism where φ1 : V −→ Ln(A) and φ2 : V −→ Lm(A) are as in Lemma 3.5.
Hence, by the Corollary 3.8, m = n.
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